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The first lnvestlgatlon of sound wave attenuation in a ViSCOUB gas iB due to 
Stokes, the effect of thermal conductivity was taken into account later by 
Klrchhoff . A Wlte complete presentation of their results 1s available in 
the ClaBBlc monograph of Lord Rayleigh 111. From the very beginning Stokes, 
just a6 Klrchhoff, used the linear equations of acoustics a6 the starting 
point, and not the exact equations which describe the motion of continuous 
media. 

In his studies of propagation of llane sound Impulses In an Ideal gas 
(without Viscosity and thermal conductivity) Crussard showed [2] that asymp- 
totic relationships of shock wave decay at large distances from the location 
of their origin are dlfferent from those for accoustlc waveB. Correct derl- 
vation of these relatlonf3hlpB Is not possible without consideration of non- 
linear terms In equations of gas dynamics. Extension of Crumard’s theory 
to cyllndrlcal and spherical ahoc 
ovlch 143, Sedov [ 51 and Whitham P 

waves was given by Landau [3], Khrlstlan- 
h] using different methods. 

It follows from the paper of Taylor [7] that the structure of weak shock 
waves Is determined basically by convective processes, related to the non- 
linear nature of Wavier-Stoke6 equations, and by dlsslpatlon of energy at 
the expense of vlscoalty and thermal conductivity of real media. Therefore 
It appeared natural that both factors mentioned will Influence the propaga- 
tion of sound Impulses to the same extent. This point of view was expressed 

by Lighthill (81. He made a detailed analysis of this concept using plane 
motion as his example. 

The decay of perturbations In cylindrical and spherical Bound lmpuleea Is 
exmined below. Xt turns out that the structure of waves and asymptotic 
relationships of their decay when time t - - are related to effects of vie- 
coslty and thermal conductivity. At this stage of the process, consideration 
of nonlinear terms in the Navler-Stokes equations may be neglected because 
theIT Influence on the formation of the flow field Is negligibly s-11. 
Variation of all gas parameters within the Impulses occurs smoothly, shock 
wavea are .absent. Conversely, the motion of shock waves, as long as their 
width Is much smaller than the general length of the wave, Is determined by 
nonlinear convective terms of equations of gaa dynamics. 

When t - - the change of the maximum value of the excess preseure In 
R-waves, with oonslderatlon of viscosity and thermal conductivity, is lnver- 
sely proportional to - for motions with axial sylametr and to ta for 
cenrally symmetric motions. The assertion of Lighthill T 81 that asymptotic 
relationships of decay of perturbations must be exponential, turned out to 
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be incorrect ; the dxm38 pressure varies m2cording to an exponential law 
only in periodic sound waves with flxed wave length [l]. The concfusionz 
obtalhed are baaed on a 
out by Khristlanovich ES f 

eneralization oi analysis of! short waves carried 
for unsteady one-dimensional motion of an ideal 

gaa . 

We shall examine one-dimensional flows for 

which all parameters depend on time t ami on one single geometrical coordl- 

nate r t which determlnea the distance from the plane, the axis or the 

center or lBy!mnttry . Let v denote the vtloolty OP partlclee, p the den- 

slty, p the pre88ure, a the apcciiric entropy, X the temperature, X, 

the coeftlcient of viscosity, X, the second coefiicient of viecoelty and 

k the coefficient of heat conduction. Continuity equations of Navies-Stokes 

and heat transfer equations are taken ln the following form 193: 

Here v-O1 1 and2 for flows with plane, axial and ctntral s-try, 

respectively. 

In order to close the system a8 written, two more equations which rtlatt 
thermodynamic quantities p, p, 8 and X are added. Aa independent parame- 

ters we take density and preeaure while specific entropy and temperature are 

expressed through these variable8 by means of the following dlfftrentlal 

relationshins: 

ratio of heat capacity at constant preaaure 0, to heat capacity at constant 
volume 0, 

In the analyeis of the system of Equation8 (1.1) to (1.4) the asaumptlon 
iS made that values of all gacr parameters ln the region of spaae under study 

differ slightly from the oarresponding values in the cqullibrfum state. The 

latter will be dtslgnated by the Index zero. A system ot coordinates moving 
with the speed of sound tz O In the unperturbed ryrtam in lntroduoed and the 
charaoteriatio length in this ayatem la designated by L . We shall l aC)ume 
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that the flow of gar under rtudy represent8 a rhort nave, I.e. that the width 

of the region where the perturbatlone are oonaentrated Is a-11 oomparlaon 
with the dlataneea over which the u8ve propagatea. Thle requlrewnt 18 aatlr- 

fled ln wat probleme related to the lnvcatlgatlon of explorlve phenomena. 

lflth respect to perturbation8 of denelty, preaaure, temrature and veloalty 

of sound, we 8hall aarw that they are of the aame order of rmallners a8 the 

ma88 veloolty of particles. Changing to dlmen8lonlesa variables WC have 

t = g4, r = sot + Lr’, 77 = Eaou’ 

p = po(l + &, P = PO (1 + EP'), a == a0 (1 f sa’) 
(1.5) 

Here Q and A are numerloal parameter8 which In megnltude are conslder- 

8b1y roller than unity. &I (L re8Ult of 8Ub8titUtiOn of rtlatiOn8hlp8 (1.5) 
into the system of equation8 (1.1) to (1,.4), three dlmen81onles8 ooefflclents 

are obtained 
N 

p0aoL 
*NRH = hp, 

NPe - pou;cpL 

In what follows we 8hall aaaume that the Inverse quantities of these num- 

bera have the ~ame order of m@gnltude and are considerably smaller than one. 

In the derivation of approxlarte equations we shall retain in a11 relatlon- 

8hlp8 only the arrjor terma neglecting other terms which have a higher order 

of 8mallnear. merefore, In equatlom of Navler-Stokes and In equatlona of 

heat tran8fer, coefficients of viscosity A, and A, and coeffiolent of heat 
aonductlvlty k an be taken a8 constant and equal to their vafues In the 
equlllbrlum atate of the medium. The lntr0duatlon of small parameter A 

into determination of dlIDen8lOnle88 time is connected with the aosumptlon 

regarding the wroune88 of the zme of perturbed motion. 

flnearlntlon of the equation of continuity we obtain (*I 

av ap o --_-= 
ar ar 

As a result of 

?rom equation of Navier-Stokes it fo1lowe that 

av p. ap o 
ar sar= 

Integration Of last tW0 equations lead8 to the following POXYIIUlaS: 

v=p= 
+p (1.6) 

whleh exprers the fact that ln the lrpproxlmtlon examined by ua, the compres- 

SiOn of gar oeour8 adiabatically and that the relatlonahip of Rlemann which 

oharauteriser a plane m~vlng sound impul8e [g], applier. It18 hOWnthat 

the relatlon8hlp of Rlemann 16 also valid for weak shook waves [9]. 

The ooncluslon drawn appear8 a8 a direct consequence of not only the 

ur~tlon of atilIld88 ln deviation8 of pal?allK?ter8 of the medium in the 

field of perturbations a8 compared to correapondlng value8 l.n the equilibrium 

rtate and the arrun@tlon about narrowneoo of the region of perturbed motion, 

above dlmsnslon1esr variables are omitted here fOllOW8. 
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but aleo the assumption of Reynolde. number values which are large in empa- 
riaon with anfty. In the sZmpllficatlon of the flret two equations from the 

system (1.1) to (1.4) expresalons were obtained in this manner uhlah charac- 

terize the motion of ideal media. The Influence of dtsslpatlve factors must 

be taken into account In the elmplification or the heat tranafcr equation. 
Preliminary traneformatlon of this equation la carried out to ellminate quan- 
titiea of the first order of smallness whloh are related to maa1 flew and 

momentum of substance. Chmglng In Equation (1.3) from entroW and tcmpera- 

ture to density and pressure by means of Equations (1.4) and oomblnlng the 
obtained expression with Rquatlone (1.1) and (1.2) we have the required rela- 

tionship 

Rere the right-hand part of Equation (1.2) without the Slrst term is 

denoted by L, (ki, 1,) and right-hand part of Rquation (1.3), by L(k,Xx.,Xa) 
After transition to a mov&n& system of aoordinatee, partial derivativea of 
functlona 0 and p with respect to the space coorbihate disappear in the 

left-hand aide of Equation (1.7). 

In the approximation under consideration 

da = ($-),dp = (mo;ol~Qo dP (-=&(g$-,a, IL+) 
Using the last relationships, substituting Rquat;lona (1.5) into (X.7) and 

retaining only the h#er tern in this equation, we obtain 

Tfie total Reynolds number Nne appearing in the last equation 1s tonmected 

with the so-called *lon@tudinal viscosity" 

1 4 1 

NRO 
__+I 

-= 3N,,, NReB 

The Pmndtl number Npr ib equal to the ratio of Peclet number NPI: to Rey- 
nolds mzmber Nm.~ho order of P&let and Reynolds nunrbers Is the-a1u#!aocord- 

ingto assumptfon; therefore the Prandtl number will be of- order of rmity. 

Wenote tM&tenm in Rquatdcn (1.3) related to energy dissipation due to viscous 

fwsbo'not l&lwnae the expression on the right-hand side oi' Rquatlon(1.8). 

Equation (1.8) governs the laws of motion of short waves In media in which 

dis8ipatlon of energy oeour~. The analgals performed leads to gentraliaatlon 

of results of RriBtianovlch 141 pertaining to unakady one-dtinaional gas 

flow without viscosity and thermal oonduotivlty. We shall exam%ne varlou~~ 

opecifio oases in more detail. 

a. aook WVBB h i&al WdlB. Let WY amatt at rirst that e < A and 

N&<A, then it foollows from Rquatlan (1.8) that 
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IntegFatlon of this relationship yields the well-known law of geometrical 

acoustlas [ 91 V-1 -- 
v = f(r)t 2 W) 

which govern6 the propagation of plane , cylindrical and spherical waves. 
The fun&ion J(r) in Equation (2.1) can be chosen arbitrarily, As is evi- 

dent fmm the analysis presented, it la only possible to utilize results of 

geometrioal ooouetloe 80 long as p&rmtere of Bound Impulses vary sufficl- 

ently smoothly with time and space. However, Equation (2.1) does not give 
asymptotic relationships for damping of perturbation8 at t - 0 even for 

ideal media deprived of vfecosity and therm51 conductivity, It is easy to 

become convinced of this by eubstitutfng Equation (2.1) into original EWa- 

tion (I .8). 

Asymptotic relatlonshlpe for damping of eonlc impulees in Ideal media are 

obtained under the oondltlon that iv:\< g - A. baetllning for simplicity 

mop -A t we have the following equation: 

which ie analogous to the one derived by Krlstianov3oh [4] In different varl- 

able8 . 

PerformXng the elementary subetitution 

(2.3) 
we write Equation (2.2) in the form of plane wave equations 

It8 integral Containing 81% 8rbitrarV function g(u) is 

7x45 - r = g (u) (2.4) 

Relatlonshlp (2.4) describes a simple Rlemann 191 wave wfth linear charac- 
terlstlas. In order to find asymptotic relationships of damping of a sound 
impulse with a weak shock wave, it is sufficient to Limit oneself to the 

special ease g(u) I 0 , since the distribution of all parameters of the gas 
wfth respect to a systems of coordinates which ll~lveb together with the wave, 
at t -. c will be given by a linear function of the geometrical coordinate 

r2 to 63. Returning to prtvlous varirsbles according to Equatlone (2.3) we 
have 

f for Plarle 
Z?=“i- wavee 

y- = + fo;a;y;&E’- u_ T for spheri- 
tint cal wave8 G-5) 

We shall writs expreasiona governing speed N oi! propagation of a weak 

shock wave in a quiescent gas. In dimmslonal variables C91 
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llr = a0 + 5 2 (p - PO) 
u 

Taking Into account Equations (1.5) and (1.6) we obtain dr/dt = b 

Mfterentlatlng relationships (2.5) along the trajectory of the shock 

wave front we find from here equations which determine the amplitude of the 

wave u* at different Instant8 of time. The solution of Indicated equation 

leads to krown results 12 to 63 
(2.6) 

c for plane C 

v* = t’/2 waves 
v _ C for cyllndrl- for spherl- 

* tS,‘. cal waves v*= - 
t )/int cal waves 

where o designates the constant of Integration. Wlthln the approxlmatlon 

examined, the excess pressure p+ at the shock front la proportional to the 

velocity of particles and therefore its change Is subject to relationships 

(2‘6). 

Under the Influence of dissipative factors shock waves will be gradually 
washed out at large distances from the point of origin. As long as the width 
of shock waves remains much smaller than the general length of the sound lm- 
pulse, their motion Is governed basically by terms ln the left-hand part of 
Equation (1.8). Among these Is the nonlinear term vbv/W which depends 
on taking Into account of convective derivatives ln Navler&okes equations. 
In the Investigation of plane motion of gas, Llghthlll found 181 that the 
variation In the maximum value of the velooity of particles follows the first 
of Equations (2.6) only when the sound Impulse cons&its of one phase of com- 
pression. For this condition the relationship of width of the shock wave to 
the length of Impulse is preserved as constant with respect to time. However, 
If the compression phase In the wave Is followed by a rarefaction wave, then 
at t-0 the maximum value of the velocity of particles approaches zero 
considerably faster than Is predicted by the theory of shock wave propagation 
In Ideal media t81. 
disappears. 

The shock wave Itself finally washes out completely and 

39 Aemtotlo rrl~tlonrhipl of dmpin(; oi rouud b@ulram. In order to 
obtain the asymptotic form which the sound Impulses acquire for t - - under 

the Influence of viscosity and thermal conductivity, let us examine the other 

limiting case E (( A - Nnel. Let 

A=--!- l+‘e 
2:V,, ( > 

Ye shall examine the behavior of N-waves In the case where the initial 

compression of gas Is subsequently followed by an expansion; ln problems 
with axial and central symmetry they are of fundamental Interest C91. How- 

ever, the assumption made about the relative order of small quantities In 

relationships (1.5) and Equation (1.8), will be valid also for the plane 

motion of gas. We have 

Y--l v a”u 
$+Tt=>P 

Introducing a new sought function u according to the second of Equations 

(2.31, we obtain for determination of this function the classic equation of 

heat conduction 
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au ah 
x=37 

For description of N-wave6 It Is necessary to take solutions of the 

dipole type [ 113 
hlr n= _ ,-P/41 
t% 

trom which, changing back to dlmenslonleea velocity of gaa particles, we find 

Dlfrerentiatlng Equation (3.1) for t I const we Bee that the value of 

perturbed velocity will be a maximum when r = J/‘%. The minimum value of 

the velocity of particles is obtained for r = - Ifa. Designating the maxl- 

mum value of velocity which can be reached by partiCleS in the wave, by an 

asterisk subscript, we have 
(3.2) 

hz for plane hz 
v =t -- 

I wave0 v* - tJlr 
for cylindrl- h% for epherl- 

cal waves v* -- 7 t2 cal waves 

where the constant hs Is introduced Instead of constant hl which 18 pro- 

portional to hp. Comparison or Equations (2.6) and (3.2) ahows that under 

the Influence of vlscoslty and heat conduction the amplitude of sound lmpule~ 

tends to zero slgnlflcantly faater than expected from those relationships 

which are based on the assumptlonofthe poaelblllty to neglect these effects. 

Shock waves are absent In the flow. The excess pressure In the wave also 

varies In accordance with Equatlone (3.2), The length I le proportional 

to Jt not only for the plane, but also for the cylindrical and spherical 

sound Impulses. In the propagation of Impulse8 In Ideal media I - Jt only 

for plane motion; In case of motion with axial symmetry I - t+ , and for 

apherlcally syrmnetrlc motion L Ic JT~X , as we demonstrated In [ 2 to 63. 

!l’hus, in a space with any number of dlmenelone the length of K-waves will 

vary according to one and the same relatlonehlp after the structure of flow 

begins to be defined primarily by diaelpatlve factors. 

Substitution of solution (3.2) into original equation (1.8) confirms that 
It is valid to neglect the term vav/ar In the left-hand part of the equa- 
tion for t - - and for a no matter how small but different from zero value 
of reciprocal Reynolds number :V,,. In other words, the asymptotic form of 
sound lmpulees and their damping relatlonahlpe are connected with viscosity 
and thermal conductivity, effects. In the finite region of the wave propaga- 
tion process, consideration of nonlinear terms In Navler-Stokes equations 
may be omitted. 

We note that the first of Equation8 (3.2) follows from the paper of Llght- 
hill [8]; however, the aesertlon made by Llghthlll In the same paper that 
asymptotic damping relationship of perturbations must be exponential for 
cylindrical and spherical waves Is Incorrect. It la evident from Equations 
(3.2) that there are power laws. Velocity of particle8 and excel8 pressure 
vary according to exponential law only In periodic sound oscillation8 with 
fixed wave length [l]. 

Attention should be directed to one peculiarity inherent In the problem 
under examination. In spite of the fact that the atruoture of flow Is fun- 
damentally determined by dlsslpatlve factors and le deecrlbed by the equation 
of heat conduction, the propagation of perturbations even in the final stage 
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of the process takes place according to Equations (1.5) with adiabatic flow 
velocity a, In the quleacent medium. More exactly, the surface separating 
the compression phase formtheexpanslon phase In the wave moves with such a 
velocity. Rlemann relationships for lsentroplc simple waves In the first 
approximation remain valid In this surface. 
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