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The first investigatlion of sound wave attenuation in a viscous gas 1s due to
Stokes, the effect of thermal conductivity was taken into account later by
Kirchhoff, A quite complete presentation of their results is availlable in
the classic monograph of Lord Rayleigh [1]. From the very beginning Stokes,
Just as Kirchhoff, used the linear equations of acoustics as the starting
poént, and not the exact equations which describe the motion of continuous
media,

In his studies of propagation of »>lane sound impulses in an ideal gas
(without viscosity and thermal conductivity) Crussard showed [2] that asymp-
totic relationships of shock wave decay at large distances from the location
of their origin are different from those for accoustic waves. Correct deri-
vation of these relationships is not possible without consideration of non-
linear terms in equations of gas dynamics. Extension of Crussard's theory
to cylindrical and spherical shocF waves was given by Landau [ 3], Khristian-
ovich [4], Sedov [5] and Whitham [6] using different methods.

It follows from the paper of Taylor [7] that the structure of weak shock
waves is determined basically by convective processes, related to the non-
linear nature of Navier-8Stokes equations, and by dissipation of energy at
the expense of viscosity and thermal conductivity of real media. Therefore
it appeared natural that both factors mentioned will influence the propaga-
tion of sound impulses to the same extent. This point of view was expressed
by Lighthill [(8). He made a detalled analysis of this concept using plane
motion as his example.

The decay of perturbations in cylindricel and spherical sound impulses is
examined below. It turns out that the structure of waves and asymptotic
relationships of their decay when time ¢ - = are related to effects of vis-
cosity and thermal conductivity. At this stage of the process, conslideration
of nonlinear terms in the Navier-Stokes equations may be neglected because
their influence on the formation of the flow field 1s negligibly small.
Variation of all gas parameters within the impulses occurs smoothly, shock
waves are absent. Conversely, the motion of shock waves, as long as their
width is much smaller than the general length of the wave, is determined by
nonlinear convective terms of equations of gas dynamics.

When t - = the change of the maximum value of the excess pressure in
N-waves, with consideration of viscosity and thermal conductivity, is inver-
sely proportional to ~ for motions with axial symmetrr and to t* for
cenrally symmetric motions. The assertion of Lighthlll 8] that asymptotic
relationships of decay of perturbations must be exponential, turned out to
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be incorrect; the excens pressure varies according to an exponential law
only in pericdic sound waves with fixed wave length [1]. The conclusions
obtained are based on 2 generalization of analysis of short waves carried
out by Khristianovich [4] for unsteady one-dimensional motion of an ideal
gas.

1. Equations of short waves., We shall examine one-dimensional flows for
which all parameters depend on time ¢ and on one single geometrical coordi-
nate r , which determines the distance from the plane, the axis or the
center of symmetry. Let v denote the velocity of particles, p the den-
sity, P the pressure, 8 the specific entropy, 7T the temperature, X,
the coefficient of viscosity, L, the second coefficient of viscosity and
k the coefficient of heat conduction. Continuity equations of Navier-Stokes
and heat transfer equations are taken in the following form [9]:
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Here v = 0, 1 and 2 for flows with plane, axial and central symmetry,
respectively.

In order to close the system as written, two more equations which relate
thermodynamic quantitles p, p, &8 and 7 are added, As independent parame-
ters we take density and pressure while specific entropy and temperature are
expressed through these variables by means of the following differential
relationships:
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ds = 2% (dp — a?dp), ar = (vdp — a®dp)
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which turned out to be quite convenient in the study of transonic flows of
a viscous heat conducting gas [10]. In Equations {(1.%) o designates the
coefficient of thermal expansion, & the adiabatic sound velocity, x the

ratio of heat capacity at constant pressure o, to heat capacity at constant
volume o,

(1.4)

In the analysis of the system of Equations {1.1) to (1.4) the assumption
is made that values of all gas parameters in the region of space under study
differ slightly from the corresponding values in the equilibrium state. The
latter will be designated by the index gero. A system of coordinates moving
with the speed of sound ¢, in the unperturbed system is introduced and the
characteristic length in this system 1s designated by L . We shall assume
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that the flow of gas under study represents a short wave, i.e. that the width
of the region where the perturbations are concentrated is small comparison
with the distances over which the wave propagates. This requirement is satis-
fied in most prodlems related to the investigation of explosive phenomena,
With reapect to perturbations of density, pressure, temperature and veloosity
of sound, we shall assume that they are of the same order of smallness as the
mass velocity of particles. Changing to dimensionless variables we have

= L—,t’, r=agt 4+ L', v = eag’
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Here ¢ and A are numerical parameters which in magnitude are conslider-
ably smaller than unity. As a result of substitution of relationships (1.5)
into the system of equations (1.1) to (1.4), three dimensionless coefficients
are obtained PogCpL
k

t
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In what follows we shall assume that the inverse quantities of these num-
bers have the same order of magnitude and are considerably smaller than one,
In the derivation of approximate equations we shall retain in all relation-
ships only the major terms neglecting other terms which have a higher order
of smallness. Therefore, in equations of Navier-Stokes and in equations of
heat transfer, coefficients of viscosity ), and i, and coefficient of heat
conductivity & can be taken as constant and equal to their values in the
equilibrium state of the medium. The introduction of small parameter A
into determination of dimensionless time is connected with the assumption
regarding the narrowness of the zone of perturbed motion. As a result of
1inearization of the equation of continuity we obtain (*)
v op =0

or ar
PFrom equation of Navier-8tokes it follows that
» w9 _ g
or poae® Or
Integration of last two equations leads to the following Formulas:
=g = 1.6
v=p=—5 P (1.6)

which express the fact that in the approximation examined by us, the compres-
sion of gas occurs adiadbatically and that the relationship of Riemann which
characterizes a plane moving sound impulse [9], applies. It 1s known that
the relationship of Riemann is also valid for weak shock waves [9].

The conclusion drawn appears as a direct consequence of not only the
assumption of smallness in deviations of parameters of the medium in the
field of perturbations as compared to corresponding values in the equilibrium
state and the assumption about narrowness of the region of perturbed motion,

#) Primes above dimensionless variables are omitted here and in what follows.
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but also the assumption of Reynolds number values which are large in compa-
rison with unity. In the simplification of the first two equations from the
system (1.1) to {1.4) expressions were obtained in this menner which charac-
terize the motion of i1deal media. The influence of dissipative factors must
be taken Into account in the simplification of the heat transfer equation.
Preliminary transformation of this equation is carried out to eliminate quan-
tities of the first order of smallness which are related to mass flow and
momentum of substance. Changing in Equation {1.3) from entropy and tempera-
ture to density and pressure by means of Equations (1.%) and combining the
obtained expreesion with Equations (1.1) and (1.2) we have the required rela-
tionship
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Here the right-hand part of Equation (1.2) without the first term is
denoted by I,(\;, 15) and right-hand part of Equation (1.3), by Z(k,\,,},)
After transition to & moving system of coordinates, partial derivatives of
functions v and p with respect to the space coordinate disappear in the
left-hand side of Equation (1.7).

In the approximation under consideration
—(%a _ (me—1)e ( __Lw(_‘i’_ﬂ_) ~L)
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Using the last relationships, substituting Equations (1.5} into (1.7) and
retaining only the higher terms in this equation, we obtain

v dv v—12\ 1 “ x—1\ 8%
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The total Reynolds number Ny, appearing in the last equation is connected

with the so-called "longitudinal viscosity”

1 _4 1 .t

NRe o 3NRe1 NRez
The Prandtl number Npr is equal to the ratio of Peclet number Np, to Rey-
nolds number NRre. The order of Péclet and Reynolds numbers is the- same accord-
ing to assumption; therefore the Prandtl number will be of the order of unity.
We note that terms in Equation (1.3) related to energy dissipation due to viscous
forces do” not influence the expression on the right-hand side of Equation (1.8).

Equation (1.8) governs the laws of motion of short waves in media in which
dissipation of energy occurs. The analysis performed leads to generalization
of results of Kristisnovich [4) pertaining to unsteady one-dimensional gas
flow without viscosity and thermal conductivity. We shall examine various
specific cases in more detail.

2. BShook waves in ideal media. Let us assume at first that € << A and
Nge << A, then it follows from Equation (1.8) that
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av v—1 2
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Integration of this relaticnship ylelds the well-known law of geometrical
acoustics [9) v—1
v=f(r)t °* 2.1)

which governs the propagation of plane, cylindrical and spherical waves,
The function J(r) in Equation {2.1) can be chosen arbitrarily. As 1is evi-
dent from the analysis presented, it 1s only possidle to utilize results of
geometrical acoustics so long as parameters of sound impulses vary suffici-
ently smoothly with time and space. However, Equation (2.1) does not give
asymptotic relationships for damping of perturbations at ¢ - = even for
ideal media deprived of viscosity and thermal conductivity. It is easy to
become convinced of this by substituting Equation (2.1} into original Equa-
tion (1.8).

Asymptotic relationships for damping of sonic impulses in ideal media are
obtained under the condition that NRe<< & ~ A. Assuming for simplicity
mge = A , we have the following equation:

dv a» v—1{ 2

which 1s analogous to the one derived by Kristianovich [4] in different vari-
ables,

Performing the elementary substitution

Vo] V1

-r-_—.St Y@, tv=u (2.3)
we write Equation (2.2) in the form of plane wave equations
du du
w e =0
Its integral containing an arbitrary function ¢{u) is
w—r =g (u (2.4)

Relationship (2.4) describes a simple Riemann [9] wave with linear charac-
teristics. In order to find asymptotic relationships of damping of & sound
impulse with & weak shock wave, it is sufficient to limit oneself to the
special case gl{u) = 0 , since the distribution of all parameters of the gas
with respect to a system of coordinates which moves together with the wave,
at ¢t - » will be given by a linear function of the geometrical coordinate
[2 to 6]. Returning to previous variables according to Equations (2.3) we
have

r - r -
for plane o for c¢ylindri ye== for spheri (2'5)

r
V= -1 waves V=57 cal waves tini cal waves

We shall write expressions governing speed N of propagetion of a weak
shock wave in a quiescent gas. In dimensional variables [9]
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Taking into account Equations (1.5) and (1.6) we obtain dr/dt = v
Differentiating relationships (2.5) along the trajectory of the shock

wave front we find from here eguations which determine the amplitude of the
wave !% at different instants of time. The solution of indicated equation

leads to known results {2 to 6] (2 6)
y. — -5 for plane v.= ¢ for cylindri- - ¢ for spheri-
¥ 4  waves # T8 cal waves *7 ¢ Vint cal waves

where ¢ designates the constant of integration. Within the approximation
examined, the excess pressure p, at the shock front is proportionsl to the
velocity of particles and therefore i1ts change is subject to relationships
(2:6).

Under the influence of dissipative factors shock waves will be gradually
washed out at large distances from the point of origin. As long as the width
of shock waves remains much smaller than the general length of the sound im-
pulse, their motion is governed basically by terms in the left-hand part of
Equation (1.8). Among these is the nonlinear term vdv/3r , which depends
on taking into account of convective derivatives in Navier-Stokes equations,
In the investigation of plane motion of gas, Lighthill found [8] that the
variation in the maximum value of the velocity of particles follows the first
of Equations (2.6) only when the sound impulse consists of one phase of com-
pression. For this condition the relationship of width of the shock wave to
the length of impulse 1s preserved as constant with respect to time. However,
if the compression phase in the wave 1s followed by a rarefaction wave, then
at ¢t - = the maximum value of the velocity of particles approaches zero
considerably faster than is predicted by the theory of shock wave propagation
in ideal media [8]. The shock wave itself finally washes out completely and
disappears,

3. Asymptotio relationships of damping of sound impulses. In order to
obtain the asymptotic form which the sound impulses acquire for t - = under
the influence of viscosity and thermal conductivity, let us examine the other
limiting case g¢< A ~ [VR,!. Let

1 ®—1
A= (1 + )

2.'ch JVPI'

We shall examine the behavior of N=-waves in the case where the initial
compression of gas 1s subsequently followed by an expansion; in problems
with axial and central symmetry they are of fundamental interest [9]). How-
ever, the assumption made about the relative order of small quantities in
relationships (1.5) and Equation (1.8), will be valid also for the plane
motion of gas. We have

dv v—1v 02y
ot T = e

Introducing a new sought function u according to the second of Equations
(2.3), we obtain for determination of this function the classic equation of
heat conduction
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du  0%u
at — or?
For description of JVN-waves it 18 neceasary to take solutions of the

dipole type [11] "
1

r -2
P Ay S A t §
e €

from which, changing back to dimensionless velocity of gas particles, we find

— hlr e“rzl‘lt (3.1)

t(‘H—2) /2

Differentiating Equation (3.1) for t = const we see that the value of
perturbed velocity will be a maximum when r — ’v’2t. The minimum value of

the velocity of particles 1s obtained for , — — pféf, Designating the maxi-
mum value of velocity which can be reached by particles in the wave, by an
asterisk subscript, we have .
(3.2)
p -l for plane v, 2 for cylindri- ky for spheri-
.t waves * 7 Pl cal waves Yy ==~ cal waves

where the constant jx,; is introduced instead of constant A, which is pro-
portional to A,. Comparison of Equations (2.6) and (3.2) shows that under
the influence of viscosity and heat conduction the amplitude of sound impulses
tends to zero significantly faster than expected from those relationships
which are based on the assumption of the possibllity to nezlect these effects.
Shock waves are absent in the flow. The excess pressure in the wave also
varies in accordance with Equations (3.2). The length ¢ 1is proportional
to J/t not only for the plane, but also for the c¢cylindrical and spherical
sound impulses. In the propagation of impulses in 1deal medla £ ~ /¢ only
for plane motion; in case of motion with axial symmetry £ ~ ti , and for
spherically symmetric motion £ ~ /Int , a8 we demonstrated in [2 to 6].
Thus, in a space with any number of dimenslons the length of ¥-waves will
vary according to one and the same relationship after the structure of flow
begins to be defined primarily by dissipative factors.

Substitution of solution (3.2) into original equation (1.8) confirms that
1t is valid to neglect the term vav/ar in the left-hand part of the equa-
tion for ¢t - » and for a no matter how small but different from zero value
of reciprocal Reynolds number :Vg.. In other words, the asymptotic form of
sound impulses and their damping relationships are connected with viscosity
and thermal conductivity. effects. In the finite region of the wave propaga-
tion process, consideration of nonlinear terms in Navler-Stokes equations
may be omitted.

We note that the first of Equations (3.2) follows from the paper of Light-
hill [8]; however, the assertion made by Lighthill in the same paper that
asymptotic damping relationship of perturbations must be exponential for
cylindrical and spherical waves 1s incorrect. It is evident from Equatlons
(3.2) that these are power laws. Velocity of particles and excess pressure
vary according to exponential law only in perilodic sound oscillations with
fixed wave length [1].

Attention should be directed to one peculiarity inherent in the problem
under examination. In spite of the fact that the structure of flow is fun-
damentally determined by disslipative factors and is described by the equation
of heat conduction, the propagation of perturbations even in the final stage
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of the process takes place according to Equations (1.5) with adiabatic flow
velocity 6, in the gquiescent medium. More exactly, the surface separating
the compression phase form the expansion phase in the wave moves with such a
velocity. Riemann relationships for isentropic simple waves in the first
approximation remain valid in this surface.

10.

11.
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